SUBSYSTEM : UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis

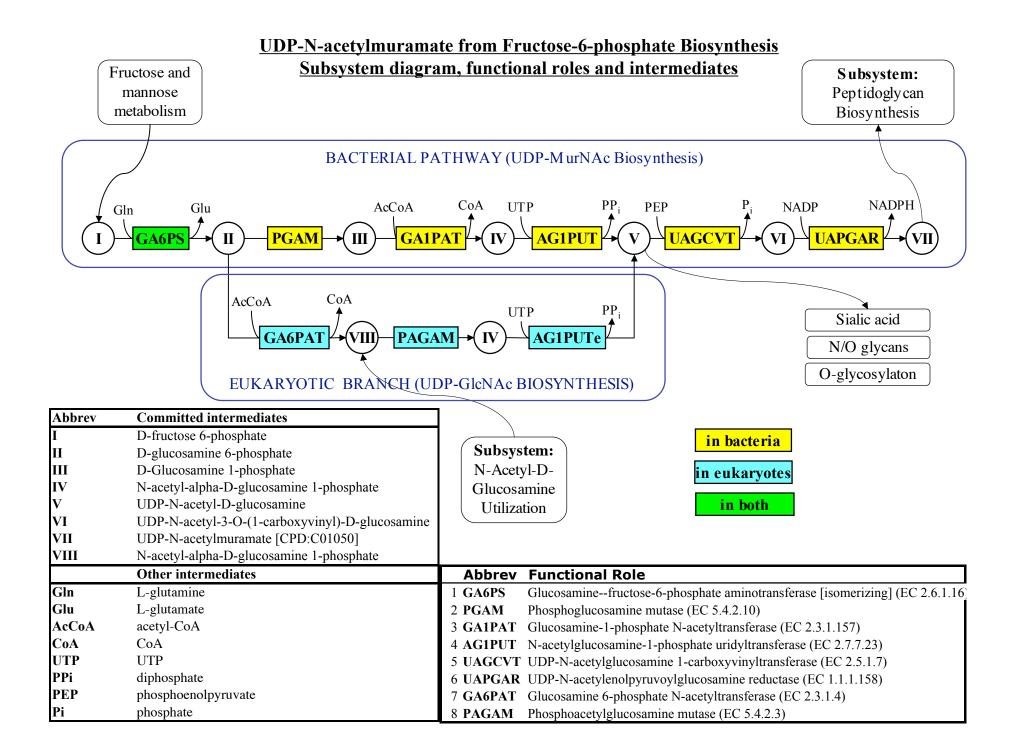
Vasiliy Portnoy¹ and Olga Zagnitko² (¹UCSD Graduate program in bioengineering, and ²Fellowship for Interpretation of Genomes)

Introduction

UDP-N-acetylmuramate pathway in bacteria provides a major building block for the biosynthesis of peptidoglycan. UDP-N-acetylglucosamine, a nucleotide-activated form of N-acetylglucosamine and a key intermediate of this pathway, plays a very important role in the biochemistry of all living organisms. In addition to peptidoglycan biosynthesis, it is required for other essential components of a bacterial cell envelope, such as lipopolysaccharides. teichoic acids and enterobacterial common antigen. In eukaryotes, UDP-N-acetylglucosamine is involved in the synthesis of sialic acid, N/O-glycan conjugates and protein O-glycosylation.

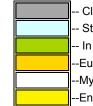
Almost all enzymes of this pathway are essential and conserved in most bacteria (with a well-known exception of Mycoplasma ssp). An interesting variant (a branching pathway) of this subsystem is present in eukaryotes, where a similar sequence of reactions (with a different order of two steps, epimerization and acetylation) stops at the formation of UDP-GlcNAc. A comparative analysis of >200 bacterial genomes has revealed only one locally missing gene. All sequenced genomes of Chlamydiales (nine integrated in SEED) contain only a truncated (single-domain) variant of a universally conserved bi-functional (two-domain) Glucosamine-1-phosphate N-acetyltransferase (EC 2.3.1.157)/ N-acetylglucosamine-1-phosphate uridyltransferase (EC 2.7.7.23) (GA1PAT/AG1PUT, glmU gene in E.coli). A missing bacterial form of domain AG1PUT appears to be replaced by a nonorthologous eukaryotic variant of this enzyme, for example, in Chlamydia trachomatis:

- CT629 is a homolog of the GA1PAT domain of bacterial fusion protein, while


- CT715 is a homolog of an alternative (nonorthologous) AG1PUTe characteristic of eukaryotes.

No other bacteria contain detectable homologs of eukaryotic AG1PUT (human gene UAP1L1), with a notable exception of all sequenced Staphylococci (in addition to a conventional glmU homolog). This observation suggests an interesting evolutionary scenario, and it may be important for the exploration of pathogenesis of these species.

References:


1. Mengin-Lecreulx D, van Heijenoort J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol. 1994 Sep;176(18):5788-95.

2. Pompeo F, Bourne Y, van Heijenoort J, Fassy F, Mengin-Lecreulx D. Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. J Biol Chem. 2001 Feb 9;276(6):3833–9.

	Bacterial Pathway						Eukaryotic branch		
GENOMES	GA6PS	PGAM				UAPGAR			AG1PUTe
Escherichia coli K12	+	+	+	+	+	+	-	-	-
Escherichia coli 042	+	+	+	+	+	+	-	-	-
Synechocystis sp. PCC 6803	+	+	+	+	+	+	-	-	-
Campylobacter jejuni RM1221	+	+	+	+	+	+	-	-	-
Thermotoga maritima MSB8	+	+	+	+	+	+	-	-	-
Bacillus cereus ATCC 10987	+	+	+	+	+	+	-	-	-
Staphylococcus aureus N315	+	+	+	+	+	+	-	-	+
Staphylococcus aureus MW2	+	+	+	+	+	+	-	-	+
Staphylococcus aureus Mu50	+	+	+	+	+	+	-	-	+
Staphylococcus epidermidis	+	+	+	+	+	+	-	-	+
Chlamydophila abortus	+	+	+	-	+	+	-	-	+
Chlamydophila caviae GPIC	+	+	+	-	+	+	-	-	+
Chlamydophila pneumoniae AR39	+	+	+	-	+	+	-	-	+
Chlamydophila pneumoniae CWL029	+	+	+	-	+	+	-	-	+
Chlamydophila pneumoniae J138	+	+	+	-	+	+	-	-	+
Chlamydophila pneumoniae TW-183	+	+	+	-	+	+	-	-	+
Anopheles gambiae str. PEST	+	-	-	-	-		+	+	+
Arabidopsis thaliana	+	-	-	-	-	-	+	+	+
Caenorhabditis elegans	+	-	-	-	-	-	+	+	+
Drosophila melanogaster	+	-	-	-	-	-	+	+	+
Homo sapiens	+	-	-	-	-	-	+	+	+
Mus musculus	+	-	-	-	-	-	+	+	+
Saccharomyces cerevisiae	+	-	-	-	-	-	+	+	+
Schizosaccharomyces pombe	+	-	-	-	-	-	+	+	+
Mycoplasma gallisepticum R	-	-	-	-	-	-	-	-	-
Mycoplasma genitalium G-37	-	-	-	-	-	-	-	-	-
Mycoplasma penetrans HF-2	-	-	-	-	-	-	-	-	-
Mycoplasma pneumoniae M129	-	-	-	-	-	-	-	-	-
Mycoplasma pulmonis UAB CTIP	-	-	-	-	-	-	-	-	-

UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis. Subsystem spreadsheet (fragment)

- Classic bacterial pathway

- Staphyloccocci appear to have both forms of AG1PUT: bacterial and eukaryotic

- In all Chlamydia sp bacterial AG1PUT is replaced by the eukaryotic form AG1PUTe

-Eukaryotic branch:UDP-GlcNAc BIOSYNTHESIS

--Mycroplasmas (as well as archaea) do not have this pathway

--Enzymes involved in Prokaryotic pathway