
Subsystem: TCA Cycle

Olga Vassieva¹ and Rick Stevens² ¹FIG, ²Argonne National Laboratory and University of Chicago

- Tricarboxylic acid cycle (TCA) oxidizes acetyl-CoA to CO₂ when functions in its full capacity. It supplies NADH for oxidative phosphorylation in the respiratory chain and thus has a major role in energy metabolism. It is also a source of three essential precursor metabolites. Many organisms contain partial TCA, functioning mainly as a source of precursor metabolites. Specifically, 2-ketoglutarate, oxaloacetate, and succinyl-CoA are starting points for the biosynthesis of glutamate, aspartate, and porphyrin, respectively
- Green bacteria and archaea assimilate CO_2 by employing reducing power (in the form of reduced ferredoxin) to reverse the normal direction of carbon flow through the TCA cycle and to produce 6 metabolites. "Reductive carboxylic acid cycle" (also called the reductive tricarboxylic acid cycle) appeared to be the sole CO_2 assimilation pathway in *Chlorobium thiosulfatophilum* (Evans et al. 1966).
- This Subsystem has been annotated across 292 genomes. About 120 of them possess complete set of functional roles. Approximately the same number of organisms appear to contain other physiologically relevant variants of this subsystem. Some of them are discussed below.

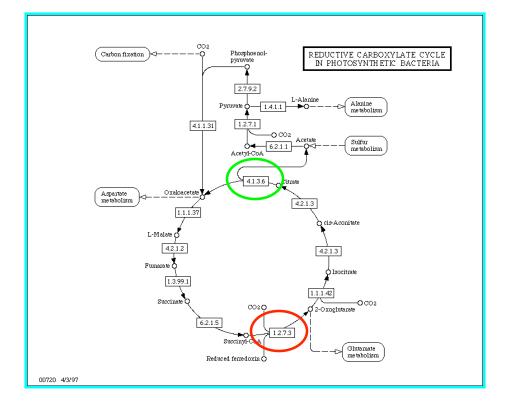
Column	Abbrev	Fun
1	gltA	Citrate synthase (si) (EC 2.3.3.1) List of
2	acnB	Aconitate hydratase 2 (EC 4.2.1.3)
3	acnA	Aconitate hydratase (EC 4.2.1.3) Functional roles
4	icd	Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)
5	sucA	2-oxoghutarate dehydrogenase E1 component (EC 1.2.4.2)
6	sucB	2-oxoglutarate dehydrogenase E2 component (EC 2.3.1.61)
7	lpdA	Dihydrolipoamide dehydrogenase (EC 1.8.1.4)
8	sucD	Succinyl-CoA ligase [ADP-forming] alpha chain (EC 6.2.1.5)
9	sucC	Succinyl-CoA ligase [ADP-forming] beta chain (EC 6.2.1.5)
10	sdhB	Succinate dehydrogenase iron-sulfur protein (EC 1.3.99.1)
11	sdhA	Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1)
12	fumA	Fumarate hydratase class I, aerobic (EC 4.2.1.2)
13	fumC	Fumarate hydratase class II (EC 4.2.1.2)
14	mdh	Malate dehydrogenase (EC 1.1.1.37)
15	mqo	Malate:quinone oxidoreductase (EC 1.1.99.16)
16	IDHI	Isocitrate dehydrogenase [NAD] subunit I, mitochondrial precursor (EC 1.1.1.41)
17	IDHII	Isocitrate dehydrogenase [NAD] subunit II, mitochondrial precursor (EC 1.1.1.41
18	ICD3g	Isocitrate dehydrogenase 3 subunit gamma, mitochondrial precursor (EC 1.1.1.41)
19	ICD3b	Isocitrate dehydrogenase 3 subunit beta, mitochondrial precursor (EC 1.1.1.41)
20	ICD3a	Isocitrate dehydrogenase 3 subunit alpha, mitochondrial precursor (EC 1.1.1.41)
21	IDHP	putative isocitrate dehydrogenase (EC 1.1.1.41)
22	ICDX	NAD-dependent isocitrate dehydrogenase precursor (EC 1.1.1.41)
23	SUCLG1	Succinyl-CoA ligase [GDP-forming] alpha chain (EC 6.2.1.4)
24	SUCLG2	Succinyl-CoA ligase [GDP-forming] beta chain (EC 6.2.1.4)
25	FumB(N)	Tartrate dehydratase alpha subunit/Fumarate hydratase class I, N-terminal domain
26	AHX	Aconitate hydratase X, predicted
27	OGSg	2-oxoglutarate oxidoreductase, gamma subunit (EC 1.2.7.3)
28	OCSb	2-oxoglutarate oxidoreductase, beta subunit (EC 1.2.7.3)
29	OGSa	2-oxoglutarate oxidoreductase, alpha subunit (EC 1.2.7.3)
30	OGSd	2-oxoglutarate oxidoreductase, delta subunit, putative (EC 1.2.7.3)
31	FumHan	Fumarate hydratase class I, anaerobic (EC 4.2.1.2)
32	icdNAD	Isocitrate dehydrogenase [NAD] (EC 1.1.1.41)
33	ATPCS	ATP citrate synthase (EC 2.3.3.8)
34	ATPCS1	citryl-CoA lyase (EC 4.2.3.34)
35	ATPCS2	citrate-CoA ligase (EC 6.2.1.18)
36	SCoAH	succinyl-CoA hydrolase (EC 3.1.2.3)
37	C3SL	citrate (pro-3S)-lyase (EC 4.1.3.6)
38	CCoAT	citrate CoA-transferase (EC 2.8.3.10)
39	CyCoAL	citryl-CoA lyase (EC 4.1.3.34)

TCA Cycle: Subsystem diagram

The "Citrate cycle (TCA cycle)" metabolic map is reproduced from KEGG (http://www.genome.jp/kegg/) with modifications. Functional roles are indicated by the corresponding EC numbers, blue arrows show output of NADH and essential metabolites produced in TCA.

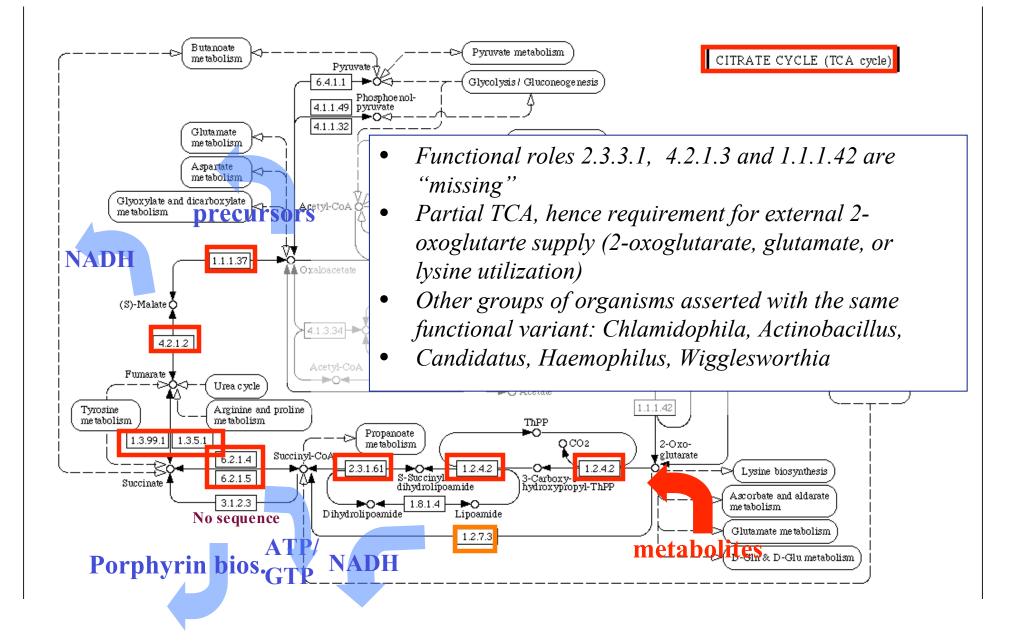
Subsystem Spreadsheet (a fragment)

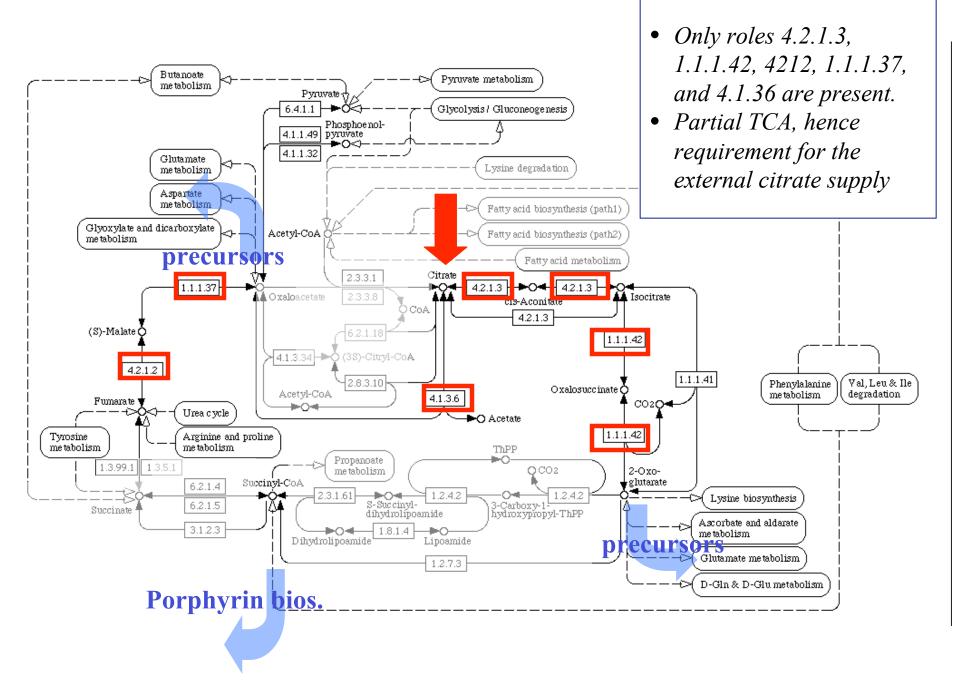
CARBON ¥ ~ DOUBLING_TIME_RANGE ENERGY ENVIRONMENT EXTREMOPHILE GRAM STAIN HUMANS INTRACELLULAR LENGTH ∜MOTILE. NCBI_GENOME_NUMBERS NOTABLE_FEATURES NOTES NUMBER_OF_BACTERIOPHAGE NUMBER OF CHROMOSOMES NUMBER_OF_MEGAPLASMIDS NUMBER_OF_PLASMIDS OBLIGATE ORDER_OF_PUBLICATION OXYGEN. ¥ PH.


Rows are coloured by one of organism's attributes available in SEED: oxygen. Orange - aerobic, blue anaerobic, dark magenta - facultatively aerobic, light magenta facultatively anaerobic. Comments in red (I, II, III) are discussed in detail in the next slides.

Organism	Variant Code	gltA	*AcoH	*icd	sucA	sucB	lpdA	sucD	sucC	sdhB	sdhA	*Fum	*MD
Escherichia coli K12 [B]	1	<u>712</u>	<u>118</u> -2, <u>1263</u> -3	<u>1121</u> -4	<u>718</u>	<u>719</u>	<u>116</u>	<u>721</u>	<u>720</u>	<u>4066</u> , <u>716</u>	<u>715,</u> 4067	<u>1598</u> -12, <u>1597</u> -13	<u>3180</u> -14, <u>3509</u> -14, <u>2184</u> -15
Escherichia coli O157:H7 EDL933 [B]	1	<u>744</u>	<u>122</u> -2, <u>2229</u> -3	<u>1658</u> -4	<u>750</u>	<u>751</u>	<u>120</u>	<u>753</u>	<u>752</u>	<u>748,</u> 5096	<u>747,</u> 5097	2355-12, 757-12, 5063-12, 2354-13	<u>4112</u> -14, <u>3098</u> -15
Erwinia carotovora atroseptica [B]	1	<u>575,</u> <u>3100</u>	<u>1674</u> -2, <u>1496</u> -3	<u>456</u> -4	<u>570</u>	<u>3509</u> , <u>569</u>	<u>1683</u>	<u>890</u>	<u>3506</u> , <u>891</u>	<u>3787,</u> <u>571</u>	<u>572</u> , <u>3788</u>	<u>4202</u> -12, <u>928</u> -13	<u>4473</u> -14, <u>515</u> -15
Bacillus subtilis subsp. subtilis str. 168 [B]	1	<u>2917</u> , <u>944</u>	<u>1804</u> -3	<u>2916</u> -4	<u>1942</u>	<u>1941</u>	<u>1463,</u> 809, 2410	<u>1612</u>	<u>1611</u>	<u>2846</u>	<u>2847</u>	<u>3310</u> -13	<u>2915</u> -14
Staphylococcus aureus NCTC 8325 [B]	0	<u>349</u>	<u>850</u> -3	<u>347</u> -4, <u>348</u> -4	<u>1540</u>	<u>1539</u>	<u>2173,</u> 2264		<u>770</u>	<u>471,</u> <u>479</u>	<u>470,</u> 703	<u>1316</u> -13	<u>2568</u> -15, <u>2320</u> -15
Staphylococcus aureus subsp. aureus MW2 [B]	1	<u>1639</u>	<u>1237</u> -3	<u>1638</u> -4	<u>1303</u>	<u>1302</u>	<u>1471</u> , <u>979</u>	<u>1129</u>	<u>1128</u>	<u>1032</u>	<u>1031</u>	<u>1792</u> -13	<u>2286</u> -15, <u>2526</u> -15
Chlamydophila pneumoniae J138 [B]			glutarat			<u>375</u>	<u>831</u>	<u>971</u>	<u>970</u>	<u>788</u>	<u>787</u>	<u>1009</u> -13	<u>1024</u> -14
Chlamydophila pneumoniae TW-183 [B]	123	Utiliz	arting m ation of mate,lys	<u>387</u>	<u>858</u>	<u>1006</u>	<u>1005</u>	<u>814</u>	<u>813</u>	<u>1047</u> -13	<u>1063</u> -14		
Chlorobium tepidum TLS [B]	2	<u>1807</u>	<u>537</u> -2	<u>349</u> -4	I.Re	eversed TCA				<u>2232,</u> 2010	<u>2011,</u> 2233	<u>821</u> -12	<u>1486</u> -14
Chloroflexus aurantiacus [B]	0	<u>2227</u>		<u>336</u> -4	<u>2125</u>	<u>1607,</u> 2124	<u>1042,</u> 1800	<u>2347</u>	<u>2268</u>	<u>3916</u>	<u>3963</u>	<u>3239</u> -13	<u>1347</u> -14, <u>1573</u> -14
Chromobacterium violaceum ATCC 12472 [B]	1	<u>1070</u>	<u>2470</u> -2, <u>1121</u> -3, <u>2054</u> -3	<u>3664</u> -4	<u>1071</u>	<u>1072</u>	<u>1074,</u> <u>528</u>	<u>1076</u>	<u>1075</u>	<u>1068</u> , <u>3368</u>	<u>1067,</u> <u>3369</u>	<u>3476</u> -12, <u>1120</u> -13	<u>1062</u> -14
Organism	Variant Code	gltA	*AcoH	*icd	sucA	sucB	lpdA	sucD	sucC	sdhB	sdhA	*Fum	*MD
Clostridium acetobutylicum ATCC 824 [B]	0		<u>1136</u> -3	<u>1137</u> -4	III. M issing oxoglutarate- Fumarate branch and citrate synthase (Citrate lyase is present): Utilization								<u>734</u> -14
Clostridium botulinum ATCC 3502 [B]	ridium botulinum							1011	<u>1470</u> -12, <u>1469</u> -12				

Open questions, comments, conjectures


I. Reverse TCA Cycle in Chlorobium


- 2-oxoglutarate synthase (EC 1.2.7.3) is essential, but genes for the 2 out of 4 subunits of this complex cannot be identified in two Chlorobia genomes.
- The complete set of 2-oxoglutarate synthase subunits in Archeoglobus is shown for comparison
- *citrate aldolase (EC 4.1.3.6) is essential in reverse TCA cycle in Chlorobium tepidum*
- See also the Notes section on the TCA Cycle subsystem page in SEED

Organism	Variant Code	gltA	*AcoH	*icd	sucA	sucB	lpdA	sucD	sucC	sdhB	sdhA	*Fum	*MD	OGSg	OCSB	OGSa	OGSd KumHa	ATPCL
Chlorobium tepidum	2	<u>1807</u>	<u>537</u> -2	<u>349</u> -4				<u>267</u>	<u>1074,</u> 279	<u>2010</u> , 2222	<u>2011</u> , 2223	<u>821</u> -12	<u>1486</u> -14	?	<u>162</u>	<u>163</u>	?	<u>1073</u>
Archaeoglobus fulgidus DSM 4304 [A]	2	<u>1330</u>	<u>55</u> -26	<u>640</u> -4				<u>1529,</u> 2171	<u>1530,</u> 2172	<u>675</u>	<u>1453</u> , <u>674</u>	<u>1086</u> -12, <u>1087</u> -12	<u>848</u> -14	<u>466</u>	<u>463</u>	<u>464</u>	<u>465</u>	\smile

II. "Chlamidia-type" TCA - functional variant 123

II. "Clostridium-type" TCA - functional variant 145

III. Functional coupling of the TCA genes


- A fragment of subsystem spreadsheet is shown
- Matching colors highlight genes that occur close to each other on the chromosome
- In different genomes orthologous genes are clustered in various combinations
- Genes encoding subunits of enzymatic complexes form very conservative clusters
- Aconitase homologs often cluster with LpdA

Organism	Variant Code	gltA	*AcoH	*icd	sucA	sucB	lpdA	sucD	sucC	sdhB	sdhA	*Fum	*MD
Desulfuromonas acetoxidans [B]	1	<u>408</u> , <u>458</u>	<u>569</u> -2, <u>1761</u> -2, <u>2466</u> -3, <u>107</u> -3, <u>2660</u> -3	<u>2869</u> -4	<u>2541</u>	<u>2542</u>	<u>1183,</u> 2014, 2543, 2676, 400	<u>3228,</u> <u>3834</u>	<u>2052,</u> <u>1293</u>	<u>2210,</u> 911, <u>3</u>	<u>2209</u> , <u>910</u>	<u>44</u> -12, <u>790</u> -12, <u>2347</u> -13, <u>1243</u> -13	<u>3088</u> -14
Synechococcus elongatus PCC 7942 [B]		<u>1958</u>	<u>250</u> -2	<u>1035</u> -4		· · · ·	g oxogl ate brar	utarate ich	-	<u>857</u>	<u>1931</u>	<u>350</u> -13	
Synechococcus sp. WH 8102 [B]	11	<u>2266</u>	<u>2491</u> -2	<u>163</u> -4						<u>585</u>	<u>586</u>	<u>632</u> -13	<u>1679</u> -15
Synechocystis sp. PCC 6803 [B]	2	<u>2293</u>	<u>2978</u> -2	<u>256</u> -4	N oxoglu	lissing tarate c	lehydr	<u>1801</u>		<u>1192,</u> 2564	<u>940</u>	<u>2231</u> -13	<u>2501</u> -14
Escherichia coli O157:H7 [B]	1	<u>816</u>	<u>209</u> -2, <u>1883</u> -3	<u>1653</u> -4	<u>822</u>	<u>823</u>	<u>207</u>	<u>825</u>	<u>824</u>	<u>820,</u> 5113	<u>5114</u> , <u>819</u>	2347-12, 5082-12, 828-12, 2346-13	<u>4083</u> -14, <u>3093</u> -15
Exiguobacterium sp. 255-15 [B]	1	<u>1287</u>	<u>1517</u> -3	<u>1288</u> -4	<u>2031</u>	<u>1593.</u> 2033	<u>1596,</u> <u>1779,</u> <u>2676</u>	<u>2462</u>	<u>2463</u>	<u>1340</u>	<u>1341</u>	<u>1108</u> -13	<u>1289</u> -14, <u>145</u> -15
Ferroplasma acidarmanus [A]	2	<u>1245,</u> <u>1919</u>	<u>1018</u> -3	<u>1622</u> -4	Miss oxoglu lehydro	tarate	<u>1385</u> , <u>1805</u>	<u>1027</u>	<u>1026</u>	<u>1033</u>	<u>1034</u>		<u>1035</u> -14

Comment IV is discussed in the next slide

IV."Synechococcus and Synechocystis"- type TCA - functional variants 2 and 11

- The absence of 2-oxoglutarate dehydrogenase complex is absent (variant code 2) is characteristic for anaerobic growth on glucose and for photoautotrophs. Oxaloacetate is the primary starting metabolite, from which oppositely directed TCA branches operate. Other organisms asserted with this functional variant: Nostoc, Sulfolobus, Aquifex, Bacteroides, Clorobium, Ferroplasma,
- The absence of 1.2.4.2 can be compensated by 1.2.7.3. (Wolinella, Campylobacter, Archaeoglobus, Chlorobium(?), Methanococcus, Methanothermobacter, Desulfovibrio, etc)
- 6.2.1.4 is missing in Synechococcus, Prochlorococcus, Gloeobacter, Helicobacter: these organisms have other active routes for production of Succinyl –CoA required for porphyrin biosynthesis.

Comments, conclusions

- Only a few functional variants of the TCA cycle (out out many asserted in SEED) were discussed here
- Potential sources of mistakes in the interpretation of functional variants of a subsystem:
 - "Overannotation" of paralogous gene families
 - Miscalled and uncalled ORFs: short (less than 100 amino acids) ORFs are often missed by automatic ORF calling software. For example, delta subunit of 2-oxoglutarate oxidoreductase, the shortest protein of this complex, has not been called in the majority of genomes where three other subunits are clearly present
 - In organisms with unknown physiology it is a nontrivial task to distinguish between the cases of "missing genes" due to (yet unidentified) non-orthologous gene displacements, and those where functional role is lacking for physiological reasons
- Lipoamide dehydrogenase encoded by *lpdA* is the shared component of the 2oxoglutarate dehydrogenase and pyruvate dehydrogenase complexes. Its sole presence in a genome (and in the subsystem spreadsheet) can be confusing. Analysis of the corresponding gene cluster often helps identify the actual complex LpdA belongs to in a particular organism.
- Some function roles have no sequences associated with them in any organism (globally "missing"). In genomes with "missing" functional role 6.2.1.4, the presence of the potentially complementing 3.2.1.3 can be only inferred, but not established, since no corresponding sequence has been identified