Subsystem: N-Acetyl-D-Glucosamine Utilization

Olga Zagnitko¹, Andrei Osterman^{1,2} ¹FIG, ²The Burnham Institute

I. Introduction

N-Acetyl-D-Glucosamine (GlcNAc) is a major component of complex carbohydrates. GlcNAc salvage and recycling pathways are present in many species. This subsystem is associated with numerous variations and nonorthologous gene displacements. In eukaryotes, GlcNAc salvage is directly linked (via PAGAM, see diagram) to the biosynthesis of UDP-GlcNAc. This route does not exist in bacteria (which do not have PAGAM), and utilization of GlcNAc proceeds via catabolism to Fructose-6P [1,2].

II. Subsystem notes

A preliminary analysis of this subsystem projected over a broad range of bacterial genomes reveals a number of open problems (missing genes) and allows us to make several functional predictions. For example, the analysis of this subsystem and proteins encoded within an extensive gene cluster in *Thermotoga maritima* (this analysis was performed in collaboration with JCSG team, www.jcsg.org) led to the following conjectures*:

1. Glucosamine-6-phosphate deaminase (EC 3.5.99.6) (G6PD, gene *nagB* in *E.coli*) is functionally replaced by a nonorthologous gene (TM0813). Structural analysis of TM0813 (at JCSG) suggests that this protein, a truncated (single-domain) homolog of a biosynthetic enzyme (*glmU* gene in *E.coli*, TM0148 in *T.maritima*), does not contain a Gln utilization domain required for an amidotransferase reaction. A comparison with the structure-function analysis of GlmU domains described in [3,4] suggests that TM0813 can catalyze only a deaminase/isomerase reaction, consistent with its inferred role in a catabolic pathway of *T.maritima*. Anticorrelation in the occurrence profiles of NagB and TM0813 homologs in a number of genomes are in agreement with this conjecture.

2. Acetyl-D-Glucosamine uptake in *T.maritima* and a number of other bacteria (such as rhizobiaceae) is predicted to be driven by a specialized ABC transport system. *T.maritima* does not contain a GlcNAc-specific component of PTS system (*nagE* gene in *E.coli*), which appears to be replaced by an ABC cassette (genes TM0810-0812), clustered with other *nag*-genes in *T.maritima*.

3. **Bacterial N-acetylglucosamine kinase** (EC 2.7.1.59) gene has not been previously identified, although the corresponding activity was detected. This activity is absolutely required in *T.maritima* and other bacteria, which lack PTS system (as discussed see above). At least two NAGK candidates have been identified: TM0808 (*nagC* homolog) and TM1280 (a distant homolog of recently characterized eukaryotic NAGK [5,6]). An evidence for the first candidate (currently known solely as GlcNAc operon repressor in *E.coli*) is based on the strong chromosomal clustering and long-range similarity analysis (ROK-kinase family).

For additional comment, definition of functional variant, etc see notes in SEED and at the Subsystem Forum (http://brucella.uchicago.edu/SubsystemForum).

^{*}in experimental verification by an on-going collaborative effort at the Burnham Institute and Genome Institute of Novartis Foundation (GNF) in San Diego

N-Acetyl-D-Glucosamine Utilization

Alternative forms

Subsets of roles

		Column	Abbrev	Functional Role						
		1	BHA	Beta-hexosaminidase (EC 3.2.1.52)						
*NAGK	Γ	2	NAGKe	N-acetylglucosamine kinase euakryotic type (EC 2.7.1.59)						
	٦	3	NAGKb	N-acetylglucosamine kinase bacterial type predicted (EC 2.7.1.59)	(inferred)					
		4	NAGPD	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)						
*G6PD	Г	5	G6PD	Glucosamine-6-phosphate deaminase (EC 3.5.99.6)						
	\exists	6	G6PDa	Glucosamine-6-phosphate deaminase [isomerizing], alternative (EC 3.5.99.6)	(inferred)					
		7	PTS_NAG	PTS system, N-acetylglucosamine-specific IIABC component (EC 2.7.1.69)	*PTS_NAG variations					
		8	PTS_NAGE	PTS system, N-acetylglucosamine-specific IIBC component (EC 2.7.1.69)						
		9	PTS_NAGa	PTS system, N-acetylglucosamine-specific IIA component (EC 2.7.1.69)						
		10	PTS_PPT	Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)						
		11	PTS_PCP	Phosphocarrier protein of PTS system						
		12	ABCNAGc	N-Acetyl-D-glucosamine ABC transport system, periplasmic sugar-binding protein	*ABCNAG					
		13	ABCNAGb	N-Acetyl-D-glucosamine ABC transport system, permease protein 1	Transporter cassette					
		14	ABCNAGb	N-Acetyl-D-glucosamine ABC transport system, permease protein 2	(specificity inferred)					
		15	ABCNAGa	N-Acetyl-D-glucosamine ABC transport system ATP-binding protein						
		16	NAG_R	Predicted transcriptional regulator of N-Acetylglucosamine utilization, GntR family						
		17	NagC	Transcriptional regulator of N-acetylglucosamine utilization						
		18	NagD	Phosphatase NagD predicted to act in N-acetylglucosamine utilization subsystem						
		19	NAMPE	N-acetylmannosamine-6-phosphate 2-epimerase (EC 5.1.3.9)	1					
		20	PAGAM	Phosphoacetylglucosamine mutase (EC 5.4.2.3)	1					

<u>2. Subsystem spreadsheet</u>

a fragment of the SEED display with selected examples

Genome ID	Organism	Variant Code	BHA	*NAGK	NAGPD	*G6PD	*PTS_NAG	PTS_PPT	PTS_PCP	*ABCNAG	NAG_R	NagC	NagD	NAMPE
158878.1	Staphylococcus aureus subsp. aureus Mu50 [B]	11111		<u>44</u> -3	<u>701</u>	<u>569</u> -5	<u>265</u> -7	<u>1084</u>	<u>1083</u>				<u>929</u>	<u>318</u>
158879.1	Staphylococcus aureus subsp. aureus N315 [B]	11111		<u>43</u> -3	<u>672</u>	<u>541</u> -5	<u>262</u> -7	<u>964</u>	<u>963</u>				<u>812</u>	<u>314</u>
211586.1	MR-1 [B]	11128	$\frac{2042}{3200}$	<u>3198</u> -2	<u>3196</u>	<u>3197</u> -6	<u>2031</u> -9	<u>1235</u> , <u>2032</u>	<u>2033</u>				<u>2513</u>	
83333.1	Escherichia coli K12 [B]	121110	1092	<u>1580</u> -3, <u>666</u> -3	<u>667</u>	<u>668</u> -5	<u>669</u> -7, <u>2385</u> -9	<u>2356</u> , <u>2384</u> , <u>2782</u> , 3866	<u>2383</u>			<u>1580</u> , <u>666</u>	<u>665</u>	<u>3167</u>
243274.1	Thermotoga maritima MSB8 [B]	23128	802	$\frac{1269}{405} - 3, \\ \frac{801}{3} - 3$	<u>807</u>	<u>806</u> -6				<u>803</u> -12, <u>804</u> -13, <u>805</u> -14			<u>1724</u>	
198094.1	Bacillus anthracis str. Ames [B]	12118		<u>2270</u> -2	<u>3936</u>	<u>3935</u> -5	<u>3931</u> -7, <u>466</u> -8, <u>5148</u> -9	<u>3929</u>	<u>3930</u> . <u>4982</u>		<u>3934</u>		<u>4803</u>	
272558.1	Bacillus halodurans C-125 [B]	12118	<u>675</u>	<u>1094</u> -3, <u>2758</u> -3, <u>700</u> -3	<u>421</u>	<u>420</u> -5	<u>844</u> -7, <u>422</u> -8, <u>673</u> -8	<u>3073</u>	<u>3074</u> , <u>3566</u>		<u>419</u>	<u>1094</u> , <u>2758</u> , <u>700</u>	<u>3428</u>	
1491.1	Clostridium botulinum ATCC 3502 [B]	12118		<u>3497</u> -2	<u>665</u>	<u>664</u> -5	<u>669</u> -8, <u>2768</u> -9, <u>668</u> -9	<u>1466</u>	<u>926</u>		<u>666</u>			
266834.1	Sinorhizobium meliloti 1021 [B]	23128	2819	<u>1494</u> -2, <u>1240</u> -3, <u>4359</u> -3	<u>1497</u>	<u>1496</u> -6		<u>3906</u>		<u>1492</u> -12, <u>1491</u> -13, <u>1490</u> -14, <u>1488</u> -15	<u>1495</u>			
272626.1	Listeria innocua Clip11262 [B]	31111		<u>215</u> -3	<u>2199</u> , <u>945</u>	2435-5, 2850-5, 870-5, 946-5	<u>1006</u> -7	<u>367, 992</u>	<u>991</u>	<u>1829</u> -12, <u>218</u> -12	<u>947</u>	<u>215</u>	<u>2483</u>	<u>2913</u>
169963.1	Listeria monocytogenes EGD-e [B]	31131		<u>176</u> -3	<u>2099</u> , <u>948</u>	2348-5, 2710-5, 870-5, 949-5, 35-6	<u>1009</u> -7	<u>348, 995</u>	<u>994</u>	<u>1722</u> -12	<u>950</u>	<u>176</u>	<u>2391</u>	<u>2790</u>
243365.1	Chromobacterium violaceum ATCC 12472 [B]	33128	$\frac{2073}{259}$.	<u>2896</u> -2, <u>2895</u> -3	<u>556</u>	<u>557</u> -6	<u>559</u> -7, <u>558</u> -9, <u>980</u> -9	<u>2311</u> . <u>3052</u> . <u>558</u> . <u>816</u> . 980		<u>262</u> -12, <u>261</u> -13, <u>260</u> -14	<u>555</u>		<u>3244</u>	
74547.1	Prochlorococcus marinus str. MIT 9313 [B]	81111	1956	<u>1816</u> -2	<u>2031</u>	<u>1418</u> -5			I				L	<u>1329</u>

Matching colors highlight genes that occur close to each other on the chromosome. Genes (proteins) assigned with respective functional roles are shown by unique SEED IDs. Alternative forms are indicated by additional numbers, dash-separated. Two examples (red box) are further illustrated by projection on a subsystem diagram.

3. Subsystem diagram

Example: *E.coli K12*

4. Subsystem diagram

Π

Ш

IV

v

Example: *T.maritima*

IV. References

- 1: Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, Nacetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol. 1999 Jan;181(1):47-54.
- 2: Plumbridge J, Pellegrini O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol. 2004 Apr;52(2):437-49.
- 3: Obmolova G, Badet-Denisot MA, Badet B, Teplyakov A. Crystallization and preliminary X-ray analysis of the two domains of glucosamine-6-phosphate synthase from Escherichia coli. J Mol Biol. 1994 Oct 7;242(5):703-5.
- 4: Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol. 2001 Nov 9;313(5):1093-102.
- 5: Yamada-Okabe T, Sakamori Y, Mio T, Yamada-Okabe H. Identification and characterization of the genes for Nacetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. Eur J Biochem. 2001 Apr;268(8):2498-505.
- 6: Hinderlich S, Berger M, Schwarzkopf M, Effertz K, Reutter W. Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur J Biochem. 2000 Jun;267(11):3301-8.