Subsystem: Inorganic sulfur (sulfate) assimilation

Christian Rückert, International NRW Graduate School in Bioinformatics and Genome Research, Institute for Genome Research, Bielefeld University, Bielefeld, Germany

Introduction

Sulfur is required for the biosynthesis of several essential compounds like amino acids (cysteine and methionine), vitamins (biotin, thiamin), and prosthetic groups (Fe-S clusters) in all organisms. In order to synthesize these compounds, the sulfur has usually to be in a reduced state, most commonly as (hydrogen) sulfide. In the absence of an environmental supply of reduced sulfur moieties (e.g. a black smoker or another organism), organisms have to reduce the needed sulfur themselves. In many microorganisms this function is performed by a very common pathway for assimilatory sulfate reduction, leading from sulfate to sulfide, which is then incorporated in various sulfur containing metabolites (Fig. 1).

Subsystem overview

For each of the reaction steps there seem to exist at least two functional variants (Fig. 2) that appear to be only weakly correlated with each other, so that almost any combination can be found (Fig. 3).

The first step in the pathway is the uptake of oxidized inorganic sulfur compounds, usually sulfate or thiosulfate. Several transporters are known to be involved in this, like the ABC-type transporter Sbp CysAWPT in *Escherichia coli* [1] or the Pit-type permease (SulP) in Bacillus subtilis [2]. Following uptake, intracellular sulfate is activated by adenylylation, yielding adenosine phosphosulfate (APS). Two different enzyme families of sulfate adenylyltransferase are commonly involved in this reaction: a heterometric form (SAT1+2, usually called CysDN) known from E. coli; and the homomeric form (DSAT) described for example in B. subtilis [2], which is usually used in dissimilatory sulfate reduction [3]. The next step is the reduction of the activated sulfate. APS is either phosphorylated to phosphoadenosine phosphosulfate (PAPS) by APS kinase (ASK, CysC) and subsequently reduced to sulfite by PAPS reductase (PAPSR, CysH) or converted directly by APS reductase (APSR, also called CysH). Which way is used in particular is hard to determine by sequence similarity alone as APS and PAPS reductases belong to the same protein family and APS reductase has been shown to also act on PAPS [4,5,6]. If not verified experimentally, it should therefore be assumed that APS reductase is bifunctional in an organism if APS kinase is also present. The last step of the pathway is the conversion of sulfite to sulfide. In E. coli and B. subtilis this step is catalyzed by a heteromeric form of sulfite reductase (SIR FP+HP, CysIJ), using NADPH directly as an electron donor [1]. Interestingly, there are a lot of organisms where only the hemoprotein subunit (SIR HP) or a protein more similar to the ferredoxin-dependent sulfite and nitrite reductases known from plants is present. In the latter case, electrons for sulfite/nitrite reductase are derived either from the photosystem I or, in non-photosynthetic tissues, from NADPH [7]. These electrons are then transferred via an ferredoxin—NADPH reductase onto a ferredoxin that in turn delivers them to the homomeric form of sulfite reductase.

At least one functional variant for each of the four steps leading from extracellular sulfate to intracellular sulfide was identified in about 80 bacterial strains and species using SEED analytical tools. More importantly, two novel hypothetical variants were predicted for each sulfate uptake and reduction of sulfite to sulfide (see next page), delivering new testable targets for functional genomics (Fig. 2).

Using SEED to identify "missing genes" and to predict novel functional variants in Sulfur assimilation pathway

Sulfate uptake

Several organisms lack a clear homologue of the ABC-type sulfate/thiosulfate transporter known from *E.coli* or the Pit-type sulfate permease found, e.g., in *B. subtilis*. Based on co-occurrence two possible alternatives could be found:

- 1. A gene encoding a putative permease (CysZ, 7) is clustered with genes involved in sulfate reduction in two corynebacterial species (Fig. 3, boxed in dark green, and Fig. 5; identifiable by a consecutive numbering in the species row). This permease might therefore be involved in sulfate uptake. The experimental verification/falsification of this assumption is currently under way in our group.
- 2. Genes encoding an ABC-type transporter of unknown specificity are clustered with genes involved in sulfate reduction in at least four bacterial species (Fig. 3, light green box).

Reduction of sulfite to sulfide

A significant number (about 40 out of 80 in total) of bacterial species currently present in the subsystem lack the flavoprotein subunit of sulfite reductase (SIR FP, 18) known from *E.coli* and *B. subtilis*. Using SEED two possible alternatives were identified in this case as well:

- 1. In the genomes of more than 40 organisms (25 of which are currently present in the subsystem), SIR FP seems to be replaced by a yet uncharacterized oxidoreductase (SIR FP2, 19; see Fig. 3, highlighted in bold red) which is clustered with the hemoprotein subunit of sulfite reductase (SIR HP, 20) (Fig. 4, boxed in red). This variant can be found, e.g., in *Sinorhizobium meliloti* and *Bordetella parapertussis*.
- 2. A second variant resembling the system found in plants can be found in the bacterial order of the *Actinomycetales* (Fig. 3, boxed in orange, and Fig. 5) but cannot be found in other bacteria with exception of the *Deinococcales*. It consists of a ferredoxin-dependent sulfite reductase (SIR FDX, 22), a ferredoxin—NADP(+) reductase (FPR, 23) and either a ferredoxin (FDX, 24) or a small, ferredoxin-like protein (CysX, 25).

An interesting observation is the possible functional coupling and even fusions of FPR, FDX, and CysX detected in SEED: In some organisms (e.g., *M. tuberculosis* and *N. farcinica*) fusion proteins of FDX and FPR are found, identifiable by the same number in both columns (Fig. 5, highlighted in bold red). In all *Actinomyetales* present in the subsystem that lack this fusion (e.g. in *C. efficiens*), a small protein distantly related to ferredoxins (CysX) is clustered with other genes involved in sulfate reduction. Apparent deviations in *C. glutamicum* and *T. fusca* (Fig. 5, marked with arrows) are due to miscalling of this small ORF by an automatic software - in both cases a clear CysX homologue exists.

The novel genes for both novel functional variants for the reduction of sulfite to sulfide are currently under study in our group to elucidate whether our predictions are correct.

Fig. 1: Subsystem diagram illustrating functional variants in assimilatory sulfate reduction pathway

Abbreviated functional roles											
Sbp/CysAWTP	Sulfate and thiosulfate ABC transporter	APSR	Adenylyl-sulfate reductase								
SulP	Sulfate permease, Pit-type	PAPSR	Phosphoadenylyl-sulfate reductase								
CysZ	Sulfate permease, hypothetical	SIR FP	Sulfite reductase, flavoprotein subunit								
CysZ	Sulfate ABC transporter, hypothetical	SIR FP2	Oxidoreductase, probable SIR flavoprotein analogue								
SAT 1	Sulfate adenylyltransferase, subunit 1 (ATP-binding)	SIR HP	Sulfite reductase, hemoprotein subunit								
SAT 2	Sulfate adenylyltransferase, subunit 2	SIR FDX	Sulfite reductase, ferredoxin-dependent								
DSAT	Sulfate adenylyltransferase, dissimilatory type	FPR	FerredoxinNADPH reductase								
ASK	Adenylyl-sulfate kinase	FDX	Ferredoxin								
ASR A	Adenylyl-sulfate reductase, α -subunit	CysX	Ferredoxin-like protein								

Fig. 2: Functional roles and their assignment to functional variants

The list of functional roles included in the subsystem Inorganic sulfur assimilation in SEED. Potential novel functional variants identified with SEED are highlighted.

Found in Variant	Column	Abbrev	Functional Role	Novel (proposed) functional variants
	1	CysA	Sulfate and thiosulfate import ATP -binding protein cysA (EC 3.6.3.25)	
	2	CysW	Sulfate transport system permease protein cysW	
1***	3	CysT	Sulfate transport system permease protein cysT	
	4	CysP	Sulfate and thiosulfate binding protein cysP	
	5	SBP	Sulfate-binding protein sbp	Sulfate untake
2***	6	SulP	Sulfate permease, Pit-type	Var. 1: A putative permease (CysZ, 7) is clustered
3***	7	CysZ	Sulfate permease, CysZ-type	with genes involved in sulfate reduction in two
	8	ABC P	ABC-type probable sulfate transporter, permease protein	corynebacterial species. Var 2: An ABC-type transporter (ABC A P S 8-10)
4***	9	ABC A	ABC-type probable sulfate transporter, ATPase component	is clustered with genes involved in sulfate
	10	ABC S	ABC-type probable sulfate transporter, periplasmic binding protein	reduction in several bacteria.
*1**	11	SAT1	Sulfate adenylyltransferase subunit 1 (EC 2.7.7.4)	
-	12	SAT2	Sulfate adenylyltransferase subunit 2 (EC 2.7.7.4)	
*2**	13	DSAT	Sulfate adenylyltransferase, dissimilatory-type (EC 2.7.7.4)	
**1*	14	APSR	Adenylyl sulfate reductase [thioredoxin] (EC 1.8.4.10)	-
**0*	15	ASK	Adenylylsulfate kinase (EC 2.7.1.25)	
·**Z*	16	PAPSR	Phosphoadenylyl-sulfate reductase [thioredoxin] (EC 1.8.4.8)	
-	17	ASR A	Adenylylsulphate reductase alpha-subunit (EC 1.8.99.2)	
***1	18	SIR FP	Sulfite reductase [NADPH] flavoprotein alpha-component (EC 1.8.1.2)	Reduction of sulfite to sulfide
***2	19	SIR FP2	Oxidoreductase probably involved in sulfite reduction	Var. 1: A small putative oxidoreductase
***1 ***2	20	SIR HP	Sulfite reductase [NADPH] hemoprotein beta-component (EC 1.8.1.2)	of the flavoprotein subunit of sulfite reductase (SIR FP, 18).
	21	SIR FDX	Ferredoxinsulfite reductase (EC 1.8.7.1)	Var. 2: A ferredoxin-dependent sulfite reductase
***4	22	FPR	FerredoxinNADP(+) reductase (EC 1.18.1.2)	(SIR FDX, 21) replaces the heterometric form.
7	23	FDX	Ferredoxin	ferredoxinNADPH reductase (FPR, 22)
	24	CysX	Ferredoxin-like protein involved in electron transfer	to either ferredoxin (FDX, 23) or CysX (24).

Fig. 3: A snapshot of the subsystem spreadsheet illustrating various combinations of functional variants in different reaction steps.

		Sulfate Uptake				Sulfate activation		Reduction Sulfate to Sulfite			Reduction Sulfite to Sulfide			
Organism	Variant Code	CysA-1 CysW-2 CysT-3 CysP-4 Sbp-5	SulP-6	CysZ-7	ABC P-8 ABC A-9 ABC S-10	CysD-11 CysN-12	DSat-13	APS-14	ASK-15 PAPS-16	ASR A-17	SIR FP-18 SIR HP-20	SIR FP2-19 SIR HP-20	SIR FDX-21 FPR-22 CysX-24	FDX-23
Thermobifida fusca [B]	0134					<u>998</u> -11 <u>997</u> -12		<u>2715</u> -14	$\frac{1003}{2715}$ -16				<u>2716</u> -21 <u>2693</u> -22	$\frac{\underline{2001}}{\underline{518}}$
Oceanobacillus iheyensis HTE831 [B]	0231						<u>1662</u> -13	<u>1655</u> -14	$\frac{1664-15}{1655-16}$		<u>1656</u> -18 <u>1657</u> -20			$\frac{1732}{2579}$
Deinococcus radiodurans R1 [B]	0234						<u>2830</u> -13	<u>2829</u> -14	2828-15 2829-16				<u>2827</u> -21 <u>678</u> -22	$\frac{2257}{2510}$
Nitrosomonas europaea ATCC 19718 [B]	1111	$ \frac{559}{560} - 1 \\ \frac{560}{561} - 2 \\ \frac{561}{565} - 5 $				<u>830</u> -11 <u>829</u> -12		<u>828</u> -14			826-18 825-20			<u>6</u>
Bordetella parapertussis 12822 [B]	1112	$ \frac{1569}{1568} - 1 \frac{1568}{1567} - 2 \frac{1567}{1566} - 3 $				<u>1572</u> -11 <u>1571</u> -12		<u>1570</u> -14				<u>380</u> -19 <u>381</u> -20		<u>2521</u> <u>3130</u>
Escherichia coli K12 [B]	1121	2390-1 2391-2 2392-3 2393-4 3836-5				<u>2707</u> -11 <u>2708</u> -12			<u>2706</u> -15 <u>2718</u> -16		<u>2720</u> -18 2719-20			<u>2209</u> 2532
Vibrio vulnificus CMCP6 [B]	1131	<u>3598</u> -1 <u>3597</u> -2 <u>3596</u> -3 <u>3595</u> -4				<u>687</u> -11 <u>688</u> -12			<u>685</u> -15 <u>1293</u> -16		<u>1291</u> -18 <u>1292</u> -20			$\frac{4194}{448}$ $\frac{878}{878}$
Sinorhizobium meliloti 1021 [B]	1132	<u>5344</u> -1 <u>5345</u> -2 <u>5346</u> -3 <u>5347</u> -4				2236-11 469-11 5363-11 2237-12 468-12 5362-12		<u>2238</u> -14	<u>469</u> -15 <u>5363</u> -15 <u>2238</u> -16			<mark>2766</mark> -19 <u>2765</u> -20		<u>2433</u> <u>3269</u> <u>4552</u>
Mycobacterium tuberculosis H37Rv [B]	1134	2399-1 2400-2 2401-3 2402-4				<u>1288</u> -11 <u>1287</u> -12		<u>2394</u> -14	<u>1288</u> -15 <u>2394</u> -16				<u>2393</u> -21 <u>3108</u> -22 <u>887</u> -22	<u>1179</u> <u>2009</u> <u>887</u>
Bacillus subtilis subsp. subtilis str. 168 [B]	2231		<u>1560</u> -6				<u>1092</u> -13 <u>1561</u> -13	<u>1093</u> -14 <u>1559</u> -14	<u>1091-15</u> <u>1562-15</u> <u>1093</u> -16 <u>1559</u> -16		<u>3350</u> -18 <u>3349</u> -20			
Corynebacterium efficiens YS-314 [B]	3114			<u>2638</u> -7		<u>2640</u> -11 <u>2641</u> -12		<u>2642</u> -14					2644-21 2592-22 2645-22 2643-24	<u>1160</u>
Streptomyces avermitilis MA -4680 [B]	4134				<u>2138</u> -8 <u>2137</u> -9 <u>2136</u> -10	2134-11 2316-11 2133-12 2315-12		<u>2131</u> -14	2132-15 2314-15 2131-16				2129-21 1508-22 2130-24	<u>1269</u> <u>2298</u> <u>3131</u> <u>6957</u>
Clostridium acetobutylicum ATCC 824 [B]	4100				<u>282</u> -8 <u>281</u> -9 <u>280</u> -10	<u>284</u> -11 <u>283</u> -12			<u>277</u> -15	<u>278</u> -17				$ \frac{249}{279} \\ \underline{3642} \\ \underline{3733} \\ \underline{473} $

Fig. 4:Positional coupling of the hemoprotein subunit of sulfite reductase
(SIR HP) with an uncharacterized oxidoreductase (SIR FP2)

1 → SIR FP2: Uncharacterized involved probably oxidoreductase in sulfite reduction
 2 → SIR HP: Sulfite reductase [NADPH] hemoprotein beta-component (EC 1.8.1.2)

Fig. 5: Conservation of the ferredoxin-dependent sulfite reduction in different *Actinomycetales*

	Sulfate Uptake				Sulfate activation		Reduction Sulfate to Sulfite			Reduction Sulfite to Sulfide				
Organism		CysA-1 CysW-2 CysT-3 CysP-4 Sbp-5	SulP-6	CysZ-7	ABC P-8 ABC A-9 ABC S-10	CysD-11 CysN-12	DSat-13	APS-14	ASK-15 PAPS-16	ASR A-17	SIR FP-18 SIR HP-20	SIR FP2-19 SIR HP-20	SIR FDX-21 FPR-22 CysX-24	FDX-23
Corynebacterium efficiens YS-314 [B]	3114			<u>2638</u> -7		<u>2640</u> -11 <u>2641</u> -12		<u>2642</u> -14					2644-21 2592-22 2645-22 2643-24	<u>1160</u>
Corynebacterium glutamicum ATCC 13032 [B]	3114			<u>2713</u> -7		<u>2715</u> -11 <u>2716</u> -12		<u>2717</u> -14					2718-21 2658-22 2719-22	$\frac{1057}{2856}$
Mycobacterium tuberculosis H37Rv [B]	1134	2399-1 2400-2 2401-3 2402-4				<u>1288</u> -11 <u>1287</u> -12		<u>2394</u> -14	<u>1288</u> -15 <u>2394</u> -16				<u>2393</u> -21 <u>3108</u> -22 <u>887</u> -22	<u>1179</u> <u>2009</u> <u>887</u>
Mycobacterium avium ssp. paratuberculosis str. k10 [B]	1134	2210-1 2211-2 2212-3 2213-4				<u>2484</u> -11 <u>2485</u> -12		<u>2036</u> -14 <u>2209</u> -14	2484-15 2036-16 2209-16				2035-21 2208-21 3176-22 825-22	2039 2607 2726 825
Streptomyces avermitilis MA-4680 [B]	4134				2138-8 2137-9 2136-10	2134-11 2316-11 2133-12 2315-12		<u>2131</u> -14	2132-15 2314-15 2131-16				2129-21 1508-22 2130-24	<u>1269</u> <u>2298</u> <u>3131</u> <u>6957</u>
Streptomyces coelicolor A3(2) [B]	4134				<u>6039</u> -8 <u>6040</u> -9 <u>6041</u> -10	<u>6042</u> -11 <u>6043</u> -12		<u>6045</u> -14	<u>6044</u> -15 <u>6045</u> -16				<u>6047</u> -21 <u>651</u> -22 <u>6046</u> -24	<u>3241</u> <u>5090</u> <u>7044</u> <u>7172</u>
Nocardia farcinica IFM 10152 [B]	1134	<u>1437-1</u> <u>1436-2</u> <u>1435-3</u> <u>1434</u> -4				$\frac{1446-11}{2421-11}$ $\frac{3315-11}{1147-12}$ $\frac{2422-12}{3316-12}$		<u>1448</u> -14	2421-11 3315-15 1448-16				<u>1449-21</u> <u>1439-22</u> <u>2548-22</u> <u>4888-22</u> <u>5155-22</u>	1245 1439 2548 4186 4570 4888 5478 5539
Thermobifida fusca [B]	0134					<u>998</u> -11 <u>997</u> -12		<u>2715</u> -14	<u>1003</u> -15 <u>2715</u> -16				<u>2716</u> -21 ▶ <u>2693</u> -22	<u>2001</u> <u>518</u>

References

- 1. Kredich, N.M. (1996). Biosynthesis of Cysteine *In* F. C. Neidhardt, R. Curtis III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, eds., *Escherichia coli* and *Salmonella*: Cellular and Molecular Biology, vol. 2. ASM Press, Washington D.C., 2. edition, pp. 514-527
- 2. Mansilla, M.C. & de Mendoza, D.. (2000). The *Bacillus subtilis cysP* gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. *Microbiology* 146: 815-821
- **3. Sperling, D., Kappler, U., et al.** (1998). Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. *FEMS Microbiol Lett* **162**: 257-264.
- Kopriva, S., T. Büchert, et al. (2002). The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation. *J. Biol. Chem.* 277: 21786-21791.
- 5. Berndt, C., Lillig, C.H., et al. (2004). Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from *Bacillus subtilis*. J. Biol. Chem. 279: 7850-7855
- 6. Taiz, L. & Zeiger, E. (2002). Plant Physiology. Sinauer Associates Inc., Sunderland, MA.