Subsystem: General secretory pathway (sec-SRP) complex (TC 3.A.5.1.1) Matthew Cohoon, Department of Computer Science, University of Chicago, Chicago, IL

The list of subsystem functional roles

ftsX	Cell division protein ftsX
ftsE	Cell division transporter, ATP-binding protein ftsE (TC 3.A.5.1.1)
ftsY	Cell division protein ftsY (TC 3.A.5.1.1)
secY	Preprotein translocase secY subunit (TC 3.A.5.1.1)
ffh	Signal recognition particle, subunit Ffh SRP54 (TC 3.A.5.1.1)
secA	Protein export cytoplasm protein SecA ATPase RNA helicase (TC 3.A.5.1.1)
secE	Preprotein translocase subunit SecE (TC 3.A.5.1.1)
secD	Protein-export membrane protein secD (TC 3.A.5.1.1)
secF	Protein-export membrane protein secF (TC 3.A.5.1.1)
YajC	Preprotein translocase subunit YajC (TC 3.A.5.1.1)
secG	Preprotein translocase subunit SecG (TC 3.A.5.1.1)
RNPA	Ribonuclease P protein component (EC 3.1.26.5)

Introduction

Approximately 20% of bacterial proteins are located partially or completely outside of the cytoplasm. Most reach their destination via the general secretory pathway (GSP). The first step of GSP is insertion and translocation of a preproteinchaperone complex across the cytoplasmic membrane. Fully translocated proteins are released into externaml milieu (in Gram(+)s) or periplasm (in Gram(-)s). Some are transported across outer membrane by one of several terminal branches of the GSP used by gram-negative bacteria.

Subsystem analysis

The Sec translocase, catalizing the first step, is comprised of the protein-conducting SecYEG channel and the heterotrimeric SecDFYajC complex that facilitates translocation. Interestingly, the Sec complex is also associated with YidC. For translocation of large domains of membrane proteins, SecA is also needed. Typically, membrane proteins are targeted to the Sec translocase by the SRP pathway.

In addition to functional roles listed above, two more roles have included in this subsystem: FtsX and SecB. The *ftsX* homologs often cluster on the chromosome with those of *ftsE* to form an ABC transporter. SecB is directly involved with Sec-SRP-mediated transport of proteins as it acts as a chaperone, maintaining the proteins targeted for secretion in unfolded states.

Organism	ftsX	ftsE	ftsY	secY	ffh	secA	secE	secD	secF	YajC	sec G	RNP A	secB
Escherichia coli K12 [B]		339 6	339 7	323 4	257 7	99	389 3	405	406	404	311 8	364 0	354 5
Photorhabdus luminescens subsp. Iaumondii TTO1 [B]		391 8	391 9	449 1	119 1	347 7	410	372 6	372 5	372 7	431 9	468 2	461 6
Xylella fastidiosa Temecula1 [B]		197 0	840	430	50	178 3	193 0	169	170	168	227	203 5	101 7
Yersinia pestis KIM [B]	408	407	406	395 4	877	356 5	468	975	976	974	674	405 7	72
Haemophilus influenzae R2866 [B]	221	220	219	249	132 9	368	103	143 6	143 5	143 7	163 7	455	196
Mycobacterium tuberculosis CDC1551 [B]	330 0	330 1	309 3	767	308 7	191 934 57	669	275 4	275 3	275 5	152 6	418 5	
Salmonella enterica serovar Choleraesuis SC-B67 [B]	349 8	349 9	350 0	335 4	267 8	133	403 1	449	450	448	323 2	375 8	362 4

Subsystem spreadsheet (a fragment)

Notes on subsystem encoding in SEED

- First, uniform assignments are generated for all PEGs (=protein encoding genes) in SEED potentially encoding a specific functional role (e.g. SecY)
- PEGs with annotations matching a functional role in a subsystem are automatically connected to subsystem spreadsheet
- Analysis of subsystem spreadsheet efficiently identifies all the genomes lacking properly annotated SecY orthologs
- Specialized tools in SEED allow user to limit the spreadsheet display to a specific phylogenetic group, or to sort organisms "by phylogeny" facilitating comparisons between related organisms
- The "show clusters" option can be activated to highlight ORFs located on the chromosome in close proximity of each other. Such clustering on the chromosome is one of the many strategies used in SEED to identify gene candidates for a "missing" functional role
- "Show missing with matches" tool can be used to automatically identify gene candidates for all functional roles in a subsystem based on sequence similarity. This computationally intensive search can also be limited to a single genome or a single functional role.
- "Annotate via translation" tool can be used to annotate groups of ORFs as a batch
- Using the SEED tools and search engine the Transporter Classification (TC) numbers were applied with the same consistency and regularity that is now prevalent with EC numbers