
I. Introduction
Comparative genomics can be used not only to find missing enzymes of known pathways but also to
discover novel pathways. One such example described below is the discovery of the pathways
leading to the synthesis and incorporation of the modified bases of tRNA Queuosine and
Archaeosine (G*).

Queuosine (Q) and its derivatives occur exclusively in Bacteria and Eukaryotes at position 34 (the
wobble position) in the anticodons of tRNAs coding for the amino acids asparagine, aspartic acid,
histidine, and tyrosine1 . Archaeosine (G*) is present only in Archaea, where it is found in the
majority of tRNA species, specifically at position 15 in the dihydrouridine loop (D-loop) 2, a site not
modified in any tRNA outside of the archaeal domain.

Subsystem diagram including the list and abbreviations of functional roles and pathway intermediates
is provided in Figure 1. A representative section of subsystem spreadsheet is shown in Figure 2
(modified from the full display available in SEED).  Brief notes and comments on some of the
revealed problems and conjectures are provided in Section II “Subsystem Notes”. Section III contains
a summary of pathway discovery illustrating the use of comparative genomics
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II. Subsystem notes
Subsystem variants:
The discovery of the missing Q/G* genes allowed us to project the encoded subsystem over a variety of genomes and to analyze the

different biologically relevant variants.
- The signature enzyme of the pathway is TGT. Several organisms, such as S. cerevisiae and Mycoplasma, lack TGT (variant -1) in

agreement with the well-known absence of queuosine 22 in their tRNA.
- Most Bacteria such as E. coli contain the Q-de novo pathway (Variant 211: 1 or 2,3,4,5,6, 7, 9)
- Some bacteria have only the preQ1 salvage pathway (Variant 011)
- Most Archaea have the  G* de novo pathway (Variant 120), but some  have  just the preQ0 salvage  pathway (Variant 020)
- Most eukaryotes have the q (queuine) salvage pathway (variant 010) This variant is also found in some  bacteria suggesting that in

these organisms the TGT enzymes exchange the q-base (like eukaryotes) and not the preQ1-base (like most bacteria).

Variant codes: “XXX”
First number: {0}, no preQ0/preQ1 biosynthesis; {1} preQ0 biosynthesis; {2} preQ1 biosynthesis.
Second number: : {0}, no tgt, {1}, bacterial/eukaryotic tgt; {2}, archaeal tgt
Third number: {0}, no queA; {1} queA present.
Variant “-1” no pathway
Variant “0” unresolved

Open questions, missing genes and gene candidates.
Two genes are still missing for the respective last steps of Q and G* biosynthesis.
Nothing is know about transporters of the pathway but transporters for the q-base must be present in eukaryots and some bacteria, as

well as transporters for preQ1 or preQ0 in organisms that have only the bacterial salvage pathway.
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Figure 1. Subsystem diagram Subsystem: Archaeosine and queuosine biosynthesis

Common Archaeal and Bacterial de novo preQ0 pathway

Queuosine and Archaeosine Biosynthesis

GTP GCYH II PTPS III QUEC IV QUEE preQ0 PREQR preQ1

NADPNADPH

TGT VII

Abbrev intermediates
GTP guanosine ribonucleotide triphosphate 
II 7,8-dihydroneopterin triphosphate
III 6-pyruvoyltetrahydropterin
IV ?
preQ0 7-cyano-7-deazaguanine 
preQ1 7-aminomethyl-7-deazaguanine 
VI preQ0-tRNA15
VII preQ1-tRNA34
VIII epoxyqueuosine-tRNA
IX queuosine-tRNA
X archaeosine-tRNA
q queuine
XI glutamyl-Q-tRNA
XII mannosyl-Q-tRNA
XIII galactosyl-Q-tRNA

Formate

Abbrev  Functional Role

GCYHI1 GTP cyclohydrolase I (EC 3.5.4.16) type 1

GCYHI2 GTP cyclohydrolase I (EC 3.5.4.16) type 2

PTPS 6-pyruvoyl tetrahydrobiopterin synthase (EC 4.2.3.12)

QUEC QueC ATPase

QUEE QueE Radical SAM 

PREQR NADPH dependent preQ0 reductase

TGT tRNA-guanine transglycosylase (EC 2.4.2.29)

ATGT archaeosine tRNA-ribosyltransferase (EC 2.4.2.-)

QUEA S-adenosylmethionine:tRNA ribosyltransferase-isomerase (EC 5.-.-.-)

QUEB B12 dependent reductase

ARCS formamidine synthase

GLUQRS glutamyl-Q-tRNA synthetase
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Figure 2. Subsystem sprteadsheet (fragment)
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III. Summary and a current status of the pathway discovery project

The biosynthesis of Q was only partially understood when we began this analysis.  Whole organism incorporation experiments established
that GTP is the probable primary precursor in the biosynthesis of queuosine [3]. The common intermediate in the queuosine and
archaeosine pathway is 7-cyano-7-deazaguanine (preQ0) [4].

In bacteria preQ0 undergoes reduction to 7-aminomethyl-7-deazaguanine (preQ1) which is subsequently inserted into the tRNA by the
enzyme tRNA-guanine transglycosylase (TGT), a reaction in which the genetically encoded base (guanine) is eliminated [5, 6]. The
remainder of queuosine biosynthesis occurs at the level of the tRNA, and involves the construction of an epoxycyclopentandiol ring
[7-9] by the S-adenosylmethionine:tRNA ribosyltransferase-isomerase (EC 5.-.-.-) (QueA) to give epoxyqueuosine (oQ), followed
by an apparent B12-dependent step in which the epoxide in oQ is reduced to give queuosine [10].

In higher eukaryotes, a mannosyl-group or galactosyl-group is further added on the cyclopentene diol of Q-tRNAAsp and Q-tRNATyr,
respectively, by as yet uncharacterized specific glycosyl-Q transferase(s). Recently, it was shown that a family of enzymes similar to
glutamyl-tRNA synthetases glutamylates Q of tRNAAsp.(see [11] for review)

Only Bacteria are capable of de novo queuosine biosynthesis. Eukaryotes acquire queuosine as a nutrient factor and/or from the intestinal
flora1, and insert queuine, the free base of queuosine, directly into the appropriate tRNAs [12] by a eukaryotic TGT.

In Archaea, preQ0 is the substrate for an archaeosine tRNA-ribosyltransferase (aTGT, EC 2.4.2.-)  [13, 14]. The formation of archaeosine
can then in principle occur through the formal addition of ammonia to the nitrile of preQ0 after incorporation into the polynucleotide.

Only three genes of the pathway have been previously identified.  The tgt gene and queA genes of E. coli [15, 16] and the archaeal tgt
family [13, 14]. We have classified archaeal TGT homologs in three subfamilies, one not containing a PUA domain (type 1), another,
containing a PUA domain (type 2), and the third one, one containing just the PUA domain (type 3). Additional analysis is required to
decipher functional roles of these subfamilies.

Predicting the preQ1 pathway by comparative genomics.

A combination of phylogenetic occurrence, clustering on the chromosome and biochemical knowledge led to the hypothesis that the
ykvJKLM genes of B. subtilis are involved in Q biosynthesis. These candidate genes were experimentally tested using an
Acinetobacter ADP1 model [17]. tRNA from all four Acinetobacter ykvJ,K,L,M mutants lacked Q 18. Homologs of YkvJKL are
found in most Archaea, and we propose that these genes are involved in the synthesis of preQ0. YkvM is specific to bacteria, and while
sequence homology suggested that this enzyme catalyzed GTP cyclohydrolase-like chemistry, our biochemical and genetic data
clearly established that YkvM is not a GTP cyclohydrolase, but instead catalyzes the reduction of preQ0 to preQ1, and thus represents
a new class of oxido-reductase that carries out the unprecedented reduction of a nitrile group to a primary amine [19].
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All the experimental evidence generated on the biosynthesis of queuosine and other 7-deazapurine natural products point to a GTP
cyclohydrolase(GCYHI) or cyclohydrolase-like reaction as the first step in the biosynthesis. While we demonstrated that YkvM was
not the expected cyclohydrolase enzyme, functional coupling analysis performed on the folE gene encoding GTP cyclohydrolase I
showed that it clustered with the ykvJKLM genes. The analysis of co-distribution of the ykvJKL and folE genes shows that many
organisms containing both, ykvJKL genes and folate biosynthesis genes (folBKCA), lack a folE  homolog. This observation suggests
that another protein family is catalyzing the same reaction in these organisms. By combining phylogenetic occurrence profiles and
chromosomal clustering analysis, a candidate for the missing gene family (COG1469) was identified. We are currently testing the
hypothesis that folE is involved in Q synthesis, and that COG1469 represents an alternative GCYHI.

The ykvK family (COG0720) has been annotated as 6-pyruvoyl-tetrahydropterin synthase (PTPS) involved in tetrahydropterine (BH4)
biosynthesis in higher animals [20]. BH4 is not found in most bacteria, and the physiological role of members of this family in E.
coli or B. subtilis is unknown. Recently, the E. coli ygcM homolog was shown to encode an enzyme having  PTPS activity (8.7% of
the mammal counterpart). [21]. Our finding that a ΔykvK mutant is deficient in queuosine biosynthesis, suggests that YkvK is the first
dedicated step of preQ0 biosynthesis. Our current working hypothesis for the biosynthesis of preQ0 requires the 4 enzymes, FolE,
YkvK (PTPS), YkvJ, and YkvL. We propose that, following the conversion of GTP to 6-pyruvoyltetrahydropterin by FolE and YkvK,
YkvJL catalyze the conversion of 6-pyruvoyltetrahydropterin to preQ0 via a still unknown intermediate.
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