Subsystem: Methionine metabolism

Dmitry Rodionov

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

Methionine and cysteine are the two sulfur-containing amino acids. In addition to its general function as a component of proteins, methionine is specifically required for translation initiation and is crucial for a variety of methyltransferase reactions as a precursor of S-adenosyl-Methionine (SAM). Main stages of methionine biosynthetic pathway (Figure 1) are as follows. Homoserine is derived from aspartate semialdehyde by the homoserine dehydrogenase (HSDH). Acylation of homoserine is catalyzed either by homoserine succinyltransferase (HSST) or by homoserine acetyltransferase (HSAT), unrelated to HSST. Yet another variation in homoserine esterification exists in plants, where O-phospho-L-homoserine is produced in a reaction catalyzed by homoserine kinase (HK). Cysteine serves as a precursor for methionine biosynthesis via the Transsulfuration pathway mediated by two enzymes, cystathionine gammasynthase (CTGS) and cystathionine beta-lyase (CTBL). An alternative pathway for methionine biosynthesis, the sulfhydrylation pathway, utilizes inorganic sulfur instead of cysteine and is catalized by O-acetylhomoserine or O-succinylhomoserine sulfhydrylases (AHSH or SHSH). Both pathways can utilize O-succinyl-L-homoserine or O-acetyl-L-homoserine in different bacterial species. The methylation of homocysteine by methyl-THF in bacteria can be catalyzed by two types of methionine synthases. Reaction catalyzed by coenzyme B12-dependent protein MetH is more than 100-fold faster than the reaction catalyzed by B12-independent isoenzyme MetE. In many bacteria the methyl group of methionine is donated by methyl-THF, which is formed by reduction of methylene-THF in a reaction catalyzed by MTHFR. S-adenosylmethionine (SAM) is synthesized from methionine and ATP by SAM synthetase. Utilization of SAM as a methyl donor results in formation of S-adenosylhomocysteine (SAH), which is then cleaved to homocysteine and adenosine by SAH hydrolase, or in two consequent stages, by S-adenosylhomocysteine nucleosidase (SAHCN) and ribosylhomocysteinase (RHMC). Remarkably, multiple functional variants of methionine biosynthesis in it's flow from homoserine to homocysteine exist in different species:

1. as in Escherichia coli. Full Transsulfuration pathway (has CTGS, CTBL) via O-succinyl-L-homoserine (has HSST).

2. as in Staphylococcus aureus. Full Transsulfuration pathway via O-acetyl-L-homoserine (has HSAT).

3. as in Chlorobium tepidum. Full Sulfhydrylation pathway (has AHSH) via O-acetyl-L-homoserine.

4. as in Streptococcus spp.. Full Sulfhydrylation pathway via O-succinyl-L-homoserine.

5. as in Listeria spp. Both Sulfhydrylation and Transsulfuration pathways via O-acetyl-L-homoserine

6. as in Clostridium acetobutylicum. Both Sulfhydrylation and Transsulfuration pathways via O-succinyl-L-homoserine.

7. as in plants. Full Transsulfuration pathway via O-phospho-L-homoserine (has HK).

8. as in Bacillus cereus. Both Sulfhydrylation and Transsulfuration pathways via O-succinyl-L-homoserine or O-acetyl-L-homoserine.

Also there are at least four functional variants of the methylation of homocysteine to methionine:

•as in Bacillus subtilis. Only B12-independent methionine synthase (MetE)

•as in Thermotoga maritima. Only B12-dependent methionine synthase (MetH)

•as in E. coli. Both B12-dependent and B12-independent methionine synthases

•as in Oceanobacillus iheyensis. Betaine--homocysteine S-methyltransferase (use betaine instead of methyl-tetrahydrofolate).

Fig. 1. Methionine biosynthesis, uptake, SAM recycling and reverse Met to Cys pathways

		Homoserine activation			Sulfhydrylation	Trans	sulfuration		Methyla	ation	Methionine uptake			
Organism	Variant	HSDH	нѕѕт	HSAT	нк	AHSH/ SHSH	CTGS	CTBL	MetH	MetE	MTHFR	BhmT	MetNPQ	MetT
Escherichia coli K12	1	2 3859	3922		3		3858	2956	3928	3756	3860		200 199 198	
Vibrio cholerae O1 biovar eltor str	•	2335	UULL		<u> </u>		0000	2000	0020	0100	0000		200, 100, 100	
N16961	1	2653	1592		2334		2652	1648	385	1681	2654		895 894 893	
Bacillus subtilis subsp. subtilis str. 168	1	3232	2197		3230		1188	1189		1320	1101		3280 3279 3278	
	•		2107		0200		1100	1100		1020			400,400,404	
Staphylococcus aureus subsp. aureus	2	1328		12	1330		350	359		356	357		462,463,464;	2226
Haemophilus influenzae Rd KW20	2	88		1208	87		85	116		1615	1378		589, 590	2320
					2570.									
Deinococcus radiodurans R1	3	1461		1055	576	1056, 2368			1149		?		1539, 1540, 1541	
Pseudomonas aeruginosa PAO1	3	3735		391	5492	3107, 5022			2202		1612			97
Chlorobium tepidum TLS	3	1999		599	2003	598			1829		1349			
Streptococcus pneumoniae R6	4	1218	1433		1217	1094	1376			514	515		150, 147	
						1983, 3161,			1191,					
Bacteroides fragilis NCTC9343	4	697	706			3403			1270	2696	760			2185
Thermotoga maritima MSB8	4	<u>541</u>	<u>873</u>		<u>539</u>	<u>874</u>	<u>1259</u>		<u>265</u>	<u>1274</u>	<u>267</u>			
		2537,											2409, 2408, 2407;	
Listeria monocytogenes EGD-e	5	541		589	2535	590	1672	1671		1673	1670		<u>282, 281, 283</u>	
											2954,			
Geobacter sulfurreducens PCA	5	1682		2446		<u>1174, 2409</u>	936	937	<u>2901</u>		855			
Pasteurella multocida Pm70	5	<u>113</u>		<u>866</u>	<u>114</u>	<u>738</u>	<u>995</u>	<u>794</u>		<u>420</u>	<u>235</u>		<u>1729, 1730, 1731</u>	
Clostridium acetobutylicum ATCC 824	6	<u>1163</u>	<u>1979</u>		<u>1396</u>	<u>276, 2916</u>	<u>559</u>	<u>560</u>	<u>745</u>		<u>461</u>		<u>1149, 1150, 1151</u>	
	_	<u>3113,</u>												
Shewanella oneidensis MR-1	6	3680	1541		3112	<u>1016, 1655</u>	<u>3681</u>	<u>1991</u>	960	<u>762</u>	3679			<u>1010</u>
Synechococcus sp. WH 8102	6	706	845		1476	846	669	670	1233		2258		405 400 407.	
		2038,											190, 196, 197;	
	•	5/97	5409	1020	2040	5400	4204	4202	4207	4207	4209		5000 5089 5087	1550
Bacillus cereus ATCC 10987	0	40709	3430	4000	2040	0400	4301	4002	4231	4231	44500		0000,0000,0007	1000
		19798,						47024		40222	17355			
		24322					12026	17034,		12333,	17356			
Arabidonsis thaliana	7	3465			8718		3688	17036		23963	17357			
	'		ļ		07 10				l	20000			2008 2007 2006-	
Oceanobacillus ihevensis HTF831	9	472	444		470	2639, 3050	2952					699	2381, 2380, 2379	
Streptococcus pyogenes SSI-1	10	<u> </u>			<u></u>								1624, 1626	
												i		

Functional variants: #1: Transsulfuration pathway via O-succinyl-L-homoserine; #2: Transsulfuration pathway via O-acetyl-L-homoserine;

#3: Sulfhydrylation pathway via O-acetyl-L-homoserine; #4: Sulfhydrylation pathway via O-succinyl-L-homoserine; #5: Both pathways via O-acetyl-L-homoserine; #8: Both pathways via O-succinyl-L-homoserine or O-acetyl-L-homoserine; #7: Transsulfuration pathway via O-phospho-L-homoserine in plants; #9: BhmT instead of the methionine synthases M etE/M etH; #10: Absence of the *de novo* methionine biosynthetic pathway and the presence of the methionine uptake genes only.

Open problems, conjectures, comments Case 1. Missing methionine synthase gene in *Oceanobacillus iheyensis* – filling the gap Uptake Homoserine activation Sulfur incorporation **Methylation** 'Met) Threonine Cysteine Biosynthesis Biosynthesis mathylene-THF NADH (NADPH) **MetNPQ** MTAFR **Reverse transsulfuration pathway HSDH** MetT NH₂,aKB HO H₀ Ser S NAD+ methyl-THF THF (NADP+) CTGL CTBS Cys MetH HK VI H₀ NH, ,Pyr MelE AĎP ATP **O**r CTBI Hcv CTGS Met **HSAT** Π Transsulfuration pathway AHSH Ac-CoA CoA **Bhm**T 01 SHSH Sulfhydrylation pathway ATP. betaine dimethyl-H₀ glycine H_2S Suc-CoA CoA SAMS **→** P_i, PP_i Adenosine O. iheyensis has neither MetE, nor MetH methionine SAN **Ribose** X synthase. RHMC AHMC **SAM-dependent** Analysis of methionine-specific regulatory elements, Smethyltransferases HO boxes, revealed a novel methionine-regulated gene, OB0691, H₀. CH,-X which is similar to Betaine-homocysteine methyltransferase **SAH SRH** SAHCN **BhmT from mammals.** BhmT catalyzes conversion of homocysteine to methionine, H₀ Adenine like MetE and MetH, but uses another methyl donor - betaine SAM recycling pathway

O. iheyensis is predicted to use a eukaryotic-type methionine synthase BhmT and thus does not require the methylene-THF reductase MetF, which is absent in this bacterium.

instead of methyl-THF.

Case 2. Analysis of the methionine-specific regulatory elements. Prediction of novel methionine-specific transporters.

MetT: predicted Methionine Transporter from the Na+:H+ Antiporter

Superfamily - Found in some Gram-positive and Gram-negative bacteria

- Has 11 predicted transmembrane segments;
- Regulated by the methionine riboswitch S-box in Gram-positive bacteria (e.g. Clostridium spp.);
- Regulated by the methionine repressor MetJ in some Gram-negative bacteria (e.g. Vibrio spp.);
- Occurres in some genomes (*C.perfringens*) that lack both the methionine biosynthetic pathway and known ABC-type methionine transporter MetNPQ, and in this case it is regulated by **S-box**;

Case 3. Missing methionine biosynthesis genes in Cyanobacteria – open questions

Multiple variations of methionine biosynthesis in it's flow from homoserine to homocysteine exist in different cyanobacteria. *Proclorococci* and *Synechococcus* WH 8102, containing orthologs of HSST and AHSH (clustered on a chromosome), as well as CTGS and CTBL (clustered as well) apparently posses both pathways, each utilizing O-succinyl-L-homoserine (HSST is asserted, while HSAT is not). Based on the presence of HSAT and AHSH homologs in their genomes, *A. variabilis* and *N. punctiforme* utilize only sulfhydrylation pathway with succinyl-CoA as precursor for homoserine esterification. The sulfhydrylation pathway in *S. elongatus* apparently utilizes O-acetyl-L-homoserine (clustered HSST and AHSH orthologs can be asserted in its genome). Surprisingly, none of these pathway variations can be asserted in genomes of *Synechocystis* 6803, *Thermosynechococcus elongatus*, and several other cyanobacterial species. Since orthologs of homoserine dehydrogenase, as well all enzymes catalyzing conversions from homoserine. One possibility is that these cyanobacteria harbor a completely novel pathway of homocysteine biosynthesis, yet to be discovered. Alternatively, they may follow the plant route through O-phosphoryl-L-homoserine (orthologs of homoserine kinase are evident in all cyanobacterial genomes). However, homologs of cystathionine gamma-synthase (CTGS) and cystathionine beta-lyase (CTBL), catalyzing these conversions in plants are "missing" from these cyanobacterial genomes and are likely to be encoded by non-orthologous genes. The search for the gene candidates for the "missing" enzymes is in progress and is based on the following assumptions:

1. strong gene candidates are expected to be present mainly in the cyanobacterial genomes missing the known pathways of homocysteine biosynthesis, and absent in the organisms where other pathways are evident (occurrence profile);

2. methionine-specific regulatory sites are likely to be present upstream of the candidate genes (co-regulation);

3. candidate genes are likely to be adjacent on a chromosome - based on a strong pattern of orthologs clustering in the known pathways of homocysteine biosynthesis (**clustering on a chromosome**).

Subsystem spreadsheet	Organism	HSDH	HSST	HSAT	AHSH	CTGS	CTBL	MetH	MetE	MTHFR	SAMS	AHMC
	Crocosphaera watsonii WH 8501	3291					~		5009	4239	4094	1914
	Gloeobacter violaceus PCC 7421	4295						477		789	2577	3183
								2469				
	Synechocystis sp. PCC 6803	2356			-		-	2473		1144	308	1500
	Thermosynechococcus elongatus BP-1	277						1027	1090	1770	977	2389
	Synechococcus elongatus PCC 7942	1397	2172		2173			702		639	1756	1953
								4254			2194	
	Anabaena variabilis ATCC 29413	2331		3872	3873			6365		6434	2334	
	Nostoc punctiforme	2895		5301	5302			4055		1885	2892	2754
											3551	
	Nostoc sp. PCC 7120	4427						619		1093	4431	1724
								106				
	Trichodesmium erythraeum IMS101	4266						1229	2279	4433	4394	1091
	Synechococcus sp. WH 8102	706	845		846	669	669	1233		2258	1980	116
	Prochlorococcus marinus str. MIT 9313	1141	875		874	225	225	728		2005	1664	138
	Prochlorococcus marinus subsp.											
	marinus str. CCMP1375	1148	799		798	404	404	957		176	349	1783
	Prochlorococcus marinus subsp.											
	pastoris str. CCMP1986	1047	640		639	405	405	874		153	309	1621
	Prochlorococcus marinus MED4 [B]	1204	1714		1715	1	1	1421		295	134	548